Applied spatial statistics for public health data公共卫生数据应用空间分析 pdf 下载 极速 mobi txt pdb lrf 网盘

Applied spatial statistics for public health data公共卫生数据应用空间分析电子书下载地址
- 文件名
- [epub 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 epub格式电子书
- [azw3 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 azw3格式电子书
- [pdf 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 pdf格式电子书
- [txt 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 txt格式电子书
- [mobi 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 mobi格式电子书
- [word 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 word格式电子书
- [kindle 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 kindle格式电子书
内容简介:
While mapped data provide a common ground for discussi*** between the public, the media, regulatory agencies, and public health researchers, the ***ysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data.
This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field
Requires only minimal background in public health and only some knowledge of statistics through multiple regression
Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure
Includes lavish use of figures/illustrati*** throughout the volume as well as ***yses of several data sets (in the form of "data breaks")
Exercises based on data ***yses reinforce concepts
书籍目录:
Preface
Acknowledgments
1 Introduction
1.1 Why Spatial Data in Public Health?
1.2 Why Statistical Methods for Spatial Data?
1.3 Intersection of Three Fields of Study
1.4 Organization of the Book
2 Analyzing Public Health Data
2.1 Observational vsExperimental Data
2.2 Risk and Rates
2.2.1 Incidence and Prevalence
2.2.2 Risk
2.2.3 Estimating Risk: Rates and Proporti***
2.2.4 Relative and Attributable Risks
2.3 Making Rates Comparable: Standardized Rates
2.3.1 Direct Standardization
2.3.2 Indirect Standardization
2.3.3 Direct or Indirect?
2.3.4 Standar***ng to What Standard?
2.3.5 Cauti*** with Standardized Rates
2.4 Basic Epidemiological Study Designs
2.4.1 Prospective Cohort Studies
2.4.2 Retrospective Case–Control Studies
2.4.3 Other Types of Epidemiological Studies
2.5 Basic Analytic Tool: The Odds Ratio
2.6 Modeling Counts and Rates
2.6.1 Generalized Linear Models
2.6.2 Logistic Regression
2.6.3 Poisson Regression
2.7 Challenges in the Analysis of Observational Data
2.7.1 Bias
2.7.2 Confounding
2.7.3 Effect Modification
2.7.4 Ecological Inference and the Ecological Fallacy
2.8 Additional Topics and Further Reading
2.9 Exercises
3 Spatial Data
3.1 Components of Spatial Data
3.2 An Odyssey into Geodesy
3.2.1 Measuring Location: Geographical Coordinates
3.2.2 Flattening the Globe: Map Projecti*** and Coordinate Systems
3.2.3 Mathematics of Location: Vector and Polygon Geometry
3.3 Sources of Spatial Data
3.3.1 Health Data
3.3.2 Census-Related Data
3.3.3 Geocoding
3.3.4 Digital Cartographic Data
3.3.5 Environmental and Natural Resource Data
3.3.6 Remotely Sensed Data
3.3.7 Digitizing
3.3.8 Collect Your Own!
3.4 Geographic Information Systems
3.4.1 Vector and Raster GISs
3.4.2 Basic GIS Operati***
3.4.3 Spatial Analysis within GIS
3.5 Problems with Spatial Data and GIS
3.5.1 Inaccurate and Incomplete Databases
3.5.2 Confidentiality
3.5.3 Use of ZIP Codes
3.5.4 Geocoding Issues
3.5.5 Location Uncertainty
4 Visualizing Spatial Data
4.1 Cartography: The Art and Science of Map***
4.2 Types of Statistical Maps
MAP STUDY: Very Low Birth Weights in Ge***ia Health Care District 9
4.2.1 Maps for Point Features
4.2.2 Maps for Areal Features
4.3 Symbolization
4.3.1 Map Generalization
4.3.2 Visual Variables
4.3.3 Color
4.4 Mapping Smoothed Rates and Probabilities
4.4.1 Locally Weighted Averages
4.4.2 Nonparametric Regression
4.4.3 Empirical Bayes Smoothing
4.4.4 Probability Mapping
4.4.5 Practical Notes and Recommendati***
CASE STUDY: Smoothing New York Leukemia Data
4.5 Modifiable Areal Unit Problem
4.6 Additional Topics and Further Reading
4.6.1 Visualization
4.6.2 Additional Types of Maps
4.6.3 Exploratory Spatial Data Analysis
4.*** Other Smoothing Approaches
4.6.5 Edge Effects
4.7 Exercises
5 Analysis of Spatial Point Patterns
5.1 Types of Patterns
5.2 Spatial Point Processes
5.2.1 Stationarity and Isotropy
5.2.2 Spatial Poisson Processes and CSR
5.2.3 Hypothesis Tests of CSR via Monte Carlo Methods
5.2.4 Heterogeneous Poisson Processes
5.2.5 Estimating Intensity Functi***
DATA BREAK: Early Medieval Grave Sites
5.3 K Function
5.3.1 Estimating the K Function
5.3.2 Diagnostic Plots Based on the K Function
5.3.3 Monte Carlo Assessments of CSR Based on the K Function
DATA BREAK: Early Medieval Grave Sites
5.3.4 Roles of First- and Second-Order Properties
5.4 Other Spatial Point Processes
5.4.1 Poisson Cluster Processes
5.4.2 Contagion/Inhibition Processes
5.4.3 Cox Processes
5.4.4 Distinguishing Processes
5.5 Additional Topics and Further Reading
5.6 Exercises
6 Spatial Clusters of Health Events: Point Data for Cases and Controls
6.1 What Do We Have? Data Types and Related Issues
6.2 What Do We Want? Null and Alternative Hypotheses
6.3 Categorization of Methods
*** Comparing Point Process Summaries
***.1 Goals
***.2 Assumpti*** and Typical Output
***.3 Method: Ratio of Kernel Intensity Estimates
DATA BREAK: Early Medieval Grave Sites
***.4 Method: Difference between K Functi***
DATA BREAK: Early Medieval Grave Sites
6.5 Scanning Local Rates
6.5.1 Goals
6.5.2 Assumpti*** and Typical Output
6.5.3 Method: Geographical Analysis Machine
6.5.4 Method: Overlapping Local Case Proporti***
DATA BREAK: Early Medieval Grave Sites
6.5.5 Method: Spatial Scan Statistics
DATA BREAK: Early Medieval Grave Sites
6.6 Nearest-Neighbor Statistics
6.6.1 Goals
6.6.2 Assumpti*** and Typical Output
6.6.3 Method: q Nearest Neighbors of Cases
CASE STUDY: San Diego Asthma
6.7 Further Reading
6.8 Exercises
7 Spatial Clustering of Health Events: Regional Count Data
7.1 What Do We Have and What Do We Want?
7.1.1 Data Structure
7.1.2 Null Hypotheses
7.1.3 Alternative Hypotheses
7.2 Categorization of Methods
7.3 Scanning Local Rates
7.3.1 Goals
7.3.2 Assumpti***
7.3.3 Method: Overlapping Local Rates
DATA BREAK: New York Leukemia Data
7.3.4 Method: Turnbull et al.’s CEPP
7.3.5 Method: Besag and Newell Approach
7.3.6 Method: Spatial Scan Statistics
7.4 Global Indexes of Spatial Autocorrelation
7.4.1 Goals
7.4.2 Assumpti*** and Typical Output
7.4.3 Method: Moran’s I
7.4.4 Method: Geary’s c
7.5 Local Indicators of Spatial Association
7.5.1 Goals
7.5.2 Assumpti*** and Typical Output
7.5.3 Method: Local Moran’s I
7.6 Goodness-of-Fit Statistics
7.6.1 Goals
7.6.2 Assumpti*** and Typical Output
7.6.3 Method: Pearson’s χ2
7.*** Method: Tango’s Index
7.6.5 Method: Focused Score Tests of Trend
7.7 Statistical Power and Related C***iderati***
7.7.1 Power Depends on the Alternative Hypothesis
7.7.2 Power Depends on the Data Structure
7.7.3 Theoretical Assessment of Power
7.7.4 Monte Carlo Assessment of Power
7.7.5 Benchmark Data and Conditional Power Assessments
7.8 Additional Topics and Further Reading
7.8.1 Related Research Regarding Indexes of Spatial Association
7.8.2 Additional Approaches for Detecting Clusters and/or Clustering
7.8.3 Space–Time Clustering and Disease Surveillance
7.9 Exercises
8 Spatial Exposure Data
8.1 Random Fields and Stationarity
8.2 Semivariograms
8.2.1 Relati***hip to Covariance Function and Correlogram
8.2.2 Parametric Isotropic Semivariogram Models
8.2.3 Estimating the Semivariogram
DATA BREAK: Smoky Mountain pH Data
8.2.4 Fitting Semivariogram Models
8.2.5 Anisotropic Semivariogram Modeling
8.3 Interpolation and Spatial Prediction
8.3.1 Inverse-Distance Interpolation
8.3.2 Kriging
CASE STUDY: Hazardous Waste Site Remediation
8.4 Additional Topics and Further Reading
8.4.1 Erratic Experimental Semivariograms
8.4.2 Sampling Distribution of the Classical Semivariogram Estimator
8.4.3 Nonparametric Semivariogram Models
8.4.4 Kriging Non-Gaussian Data
8.4.5 Geostatistical Simulation
8.4.6 Use of Non-Euclidean Distances in Geostatistics
8.4.7 Spatial Sampling and Network Design
8.5 Exercises
9 Linking Spatial Exposure Data to Health Events
9.1 Linear Regression Models for Independent Data
9.1.1 Estimation and Inference
9.1.2 Interpretation and Use with Spatial Data
DATA BREAK: Raccoon Rabies in Connecticut
9.2 Linear Regression Models for Spatially Autocorrelated Data
9.2.1 Estimation and Inference
9.2.2 Interpretation and Use with Spatial Data
9.2.3 Predicting New Observati***: Universal Kriging
DATA BREAK: New York Leukemia Data
9.3 Spatial Autoregressive Models
9.3.1 Simultaneous Autoregressive Models
9.3.2 Conditional Autoregressive Models
9.3.3 Concluding Remarks on Conditional Autoregressi***
9.3.4 Concluding Remarks on Spatial Autoregressi***
9.4 Generalized Linear Models
9.4.1 Fixed Effects and the Marginal Specification
9.4.2 Mixed Models and Conditional Specification
9.4.3 Estimation in Spatial GLMs and GLMMs
DATA BREAK: Modeling Lip Cancer Morbidity in Scotland
9.4.4 Additional C***iderati*** in Spatial GLMs
CASE STUDY: Very Low Birth Weights in Ge***ia Health Care District 9
9.5 Bayesian Models for Disease Mapping
9.5.1 Hierarchical Structure
9.5.2 Estimation and Inference
9.5.3 Interpretation and Use with Spatial Data
9.6 Parting Thoughts
9.7 Additional Topics and Further Reading
9.7.1 General References
9.7.2 Restricted Maximum Likelihood Estimation
9.7.3 Residual Analysis with Spatially Correlated Error Terms
9.7.4 Two-Parameter Autoregressive Models
9.7.5 Non-Gaussian Spatial Autoregressive Models
9.7.6 Classical/Bayesian GLMMs
9.7.7 Prediction with GLMs
9.7.8 Bayesian Hierarchical Models for Spatial Data
9.8 Exercises
References
Author Index
Subject Index
作者介绍:
LANCE A. WALLER, PhD, is an associate professor in the Department of Biostatistics at Emory University in Atlanta, Ge***ia. He received his PhD in Operati*** Research in 1992 from Cornell University. Dr. Walle***as named Student Government Professor of th
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
While mapped data provide a common ground for discussi*** between the public, the media, regulatory agencies, and public health researchers, the ***ysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data. This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field Requires only minimal background in public health and only some knowledge of statistics through multiple regression Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure Includes lavish use of figures/illustrati*** throughout the volume as well as ***yses of several data sets (in the form of "data breaks") Exercises based on data ***yses reinforce concepts
网站评分
书籍多样性:7分
书籍信息完全性:8分
网站更新速度:4分
使用便利性:9分
书籍清晰度:8分
书籍格式兼容性:6分
是否包含广告:8分
加载速度:6分
安全性:9分
稳定性:5分
搜索功能:5分
下载便捷性:8分
下载点评
- 图书多(157+)
- 赚了(438+)
- 目录完整(500+)
- 傻瓜式服务(513+)
- 引人入胜(578+)
- 一星好评(146+)
- 五星好评(423+)
- 收费(612+)
- 速度快(276+)
下载评价
- 网友 寇***音:
好,真的挺使用的!
- 网友 家***丝:
好6666666
- 网友 宫***玉:
我说完了。
- 网友 丁***菱:
好好好好好好好好好好好好好好好好好好好好好好好好好
- 网友 郗***兰:
网站体验不错
- 网友 菱***兰:
特好。有好多书
- 网友 戈***玉:
特别棒
- 网友 融***华:
下载速度还可以
- 网友 訾***雰:
下载速度很快,我选择的是epub格式
- 网友 龚***湄:
差评,居然要收费!!!
- 网友 潘***丽:
这里能在线转化,直接选择一款就可以了,用他这个转很方便的
- 网友 冷***洁:
不错,用着很方便
- 网友 屠***好:
还行吧。
- 网友 孙***美:
加油!支持一下!不错,好用。大家可以去试一下哦
喜欢"Applied spatial statistics for public health data公共卫生数据应用空间分析"的人也看了
大数据服务-风险元传递模型( 货号:750967909) pdf 下载 极速 mobi txt pdb lrf 网盘
正版教材 “十二五”普通高等教育本科规划教材高电压工程(第三版) 林福昌 高等教育本专科研究生大教材教辅 大学教材书籍 9 pdf 下载 极速 mobi txt pdb lrf 网盘
基于数据的装备体系建模与评估方法9787118120837兴海图书专营店 pdf 下载 极速 mobi txt pdb lrf 网盘
全国房地产经纪人职业资格考试一本通--房地产经纪业务操作考点全解与练习 pdf 下载 极速 mobi txt pdb lrf 网盘
Pro/ENGINEER Wildfire 3.0机构运动仿真与动力分析(附光盘) pdf 下载 极速 mobi txt pdb lrf 网盘
幽微的人性 pdf 下载 极速 mobi txt pdb lrf 网盘
酒店餐饮民宿经营与管理指南系列--民宿客栈怎样做——策划·运营·推广·管理 pdf 下载 极速 mobi txt pdb lrf 网盘
9787303162024 pdf 下载 极速 mobi txt pdb lrf 网盘
道路自信(中国特色社会主义道路探索与思考) pdf 下载 极速 mobi txt pdb lrf 网盘
身心疾患治疗手册 pdf 下载 极速 mobi txt pdb lrf 网盘
- 一分钟国学常识 pdf 下载 极速 mobi txt pdb lrf 网盘
- 风暴侦探犬小五: 1消失的黑夜启明星 pdf 下载 极速 mobi txt pdb lrf 网盘
- 移动通信(第四版)(李建东) “十一五” pdf 下载 极速 mobi txt pdb lrf 网盘
- 软件架构设计 pdf 下载 极速 mobi txt pdb lrf 网盘
- 档案信息资源开发与管理研究 pdf 下载 极速 mobi txt pdb lrf 网盘
- 美国人的性格(一本超级震撼心灵的杰作,著名学者费孝通深度挖掘美国人的性格,揭示美国从蛮荒到超级霸主之谜及大国崛起的秘密) pdf 下载 极速 mobi txt pdb lrf 网盘
- “故事中国”图画书 仓颉造字 pdf 下载 极速 mobi txt pdb lrf 网盘
- 给孩子讲前沿科技(全2册) pdf 下载 极速 mobi txt pdb lrf 网盘
- 美容医学伦理学 pdf 下载 极速 mobi txt pdb lrf 网盘
- 小锦祝福+2024年创意日历 亚克力台历+LED木质灯底座 多功能摆台 /留言板/备忘录 pdf 下载 极速 mobi txt pdb lrf 网盘
书籍真实打分
故事情节:6分
人物塑造:5分
主题深度:5分
文字风格:3分
语言运用:9分
文笔流畅:7分
思想传递:6分
知识深度:5分
知识广度:5分
实用性:5分
章节划分:4分
结构布局:3分
新颖与独特:7分
情感共鸣:3分
引人入胜:6分
现实相关:9分
沉浸感:3分
事实准确性:5分
文化贡献:3分